8,231 research outputs found

    Carrier States and Ferromagnetism in Diluted Magnetic Semiconductors

    Full text link
    Applying the dynamical coherent potential approximation to a simple model, we have systematically studied the carrier states in A1xA_{1-x}MnxB_xB-type diluted magnetic semiconductors (DMS's). The model calculation was performed for three typical cases of DMS's: The cases with strong and moderate exchange interactions in the absence of nonmagnetic potentials, and the case with strong attractive nonmagnetic potentials in addition to moderate exchange interaction. When the exchange interaction is sufficiently strong, magnetic impurity bands split from the host band. Carriers in the magnetic impurity band mainly stay at magnetic sites, and coupling between the carrier spin and the localized spin is very strong. The hopping of the carriers among the magnetic sites causes ferromagnetism through a {\it double-exchange (DE)-like} mechanism. We have investigated the condition for the DE-like mechanism to operate in DMS's. The result reveals that the nonmagnetic attractive potential at the magnetic site assists the formation of the magnetic impurity band and makes the DE-like mechanism operative by substantially enhancing the effect of the exchange interaction. Using conventional parameters we have studied the carrier states in Ga1x_{1-x}Mnx_xAs. The result shows that the ferromagnetism is caused through the DE-like mechanism by the carriers in the bandtail originating from the impurity states.Comment: 20 pages, 14 figure

    Patchy He II reionization and the physical state of the IGM

    Full text link
    We present a Monte-Carlo model of He II reionization by QSOs and its effect on the thermal state of the clumpy intergalactic medium (IGM). The model assumes that patchy reionization develops as a result of the discrete distribution of QSOs. It includes various recipes for the propagation of the ionizing photons, and treats photo-heating self-consistently. The model provides the fraction of He III, the mean temperature in the IGM, and the He II mean optical depth -- all as a function of redshift. It also predicts the evolution of the local temperature versus density relation during reionization. Our findings are as follows: The fraction of He III increases gradually until it becomes close to unity at z2.83.0z\sim 2.8-3.0. The He II mean optical depth decreases from τ10\tau\sim 10 at z3.5z\geq 3.5 to τ0.5\tau\leq 0.5 at z2.5z\leq 2.5. The mean temperature rises gradually between z4z\sim 4 and z3z\sim 3 and declines slowly at lower redshifts. The model predicts a flattening of the temperature-density relation with significant increase in the scatter during reionization at z3z\sim 3. Towards the end of reionization the scatter is reduced and a tight relation is re-established. This scatter should be incorporated in the analysis of the Lyα\alpha forest at z3z\leq 3. Comparison with observational results of the optical depth and the mean temperature at moderate redshifts constrains several key physical parameters.Comment: 18 pages, 9 figures; Changed content. Accepted for publication in MNRA

    The Influence of Magnetic Domain Walls on Longitudinal and Transverse Magnetoresistance in Tensile Strained (Ga,Mn)As Epilayers

    Full text link
    We present a theoretical analysis of recent experimental measurements of magnetoresistance in (Ga,Mn)As epilayers with perpendicular magnetic anisotropy. The model reproduces the field-antisymmetric anomalies observed in the longitudinal magnetoresistance in the planar geometry (magnetic field in the epilayer plane and parallel to the current density), as well as the unusual shape of the accompanying transverse magnetoresistance. The magnetoresistance characteristics are attributed to circulating currents created by the presence of magnetic domain walls

    Mott Relation for Anomalous Hall and Nernst effects in Ga1-xMnxAs Ferromagnetic Semiconductors

    Full text link
    The Mott relation between the electrical and thermoelectric transport coefficients normally holds for phenomena involving scattering. However, the anomalous Hall effect (AHE) in ferromagnets may arise from intrinsic spin-orbit interaction. In this work, we have simultaneously measured AHE and the anomalous Nernst effect (ANE) in Ga1-xMnxAs ferromagnetic semiconductor films, and observed an exceptionally large ANE at zero magnetic field. We further show that AHE and ANE share a common origin and demonstrate the validity of the Mott relation for the anomalous transport phenomena

    Integral Transforms for Conformal Field Theories with a Boundary

    Full text link
    A new method is developed for solving the conformally invariant integrals that arise in conformal field theories with a boundary. The presence of a boundary makes previous techniques for theories without a boundary less suitable. The method makes essential use of an invertible integral transform, related to the radon transform, involving integration over planes parallel to the boundary. For successful application of this method several nontrivial hypergeometric function relations are also derived.Comment: 20 pagess, LateX fil

    The effect of the Abrikosov vortex phase on spin and charge states in magnetic semiconductor-superconductor hybrids

    Full text link
    We explore the possibility of using the inhomogeneous magnetic field carried by an Abrikosov vortex in a type-II superconductor to localize spin-polarized textures in a nearby magnetic semiconductor quantum well. We show how Zeeman-induced localization induced by a single vortex is indeed possible, and use these results to investigate the effect of a periodic vortex array on the transport properties of the magnetic semiconductor. In particular, we find an unconventional Integer Quantum Hall regime, and predict directly testable experimental consequences due to the presence of the periodic spin polarized structure induced by the superconducting vortex lattice in the magnetic semiconductor.Comment: 12 pages, 15 figure
    corecore